lunes, 31 de agosto de 2009

Reino Protista

hongos [editar]

Hongos ornamentales [editar]
Por la belleza que guardan los hongos, muchos se han usado con un fin estético y ornamental, incluyéndoselos en ofrendas que, acompañados con flores y ramas, son ofrecidas en diversas ceremonias. En la actualidad todavía es fácil encontrar esta costumbre en algunos grupos étnicos de México, como son la náhuatl en la sierra de Puebla-Tlaxcala; los zapotecas en Oaxaca y los tzotziles y tojalabale en Chiapas. Los hongos que destacan entre los más empleados con este fin son los hongos psilocibios y la Amanita muscaria; esta última se ha convertido en el estereotipo de seta por lo altamente llamativa que es, ya que está compuesta por un talo blanco y una sombrilla (basidiocarpo) roja, moteada de color blanco.

Hongos alimenticios [editar]
Quizás el primer empleo directo que se les dio a los hongos es el de alimento. Mucho se ha discutido sobre el valor nutritivo de ellos, si bien es cierto a la mayoría se les puede considerar con elevada calidad porque contienen una buena proporción de proteínas y vitaminas y escasa cantidad de carbohidratos y lípidos. Dentro de los más consumidos tenemos: Boletus edulis, Lactarius deliciosus, Russula brevipes y Amanita caesarea. Otros hongos que se consumen notablemente son: Agaricus campestris y A. bisporus, en nuestro medio vulgarmente conocidos como "champiñones" u "hongos de París"; la importancia de éstos se debe a que son de las pocas especies que pueden cultivarse artificialmente y de manera industrial.
Los hongos microscópicos también han invertido directa o indirectamente para la creación de fuentes alimenticias y representan una expectativa de apoyo para el futuro; en este campo cabe citar los trabajos de obtención de biomasa, a partir de levaduras como Candida utilis, que se usa para mejorar el alimento forrajero.
El crecimiento de diversos hongos incluidos sobre algunos alimentos pueden elevar el nivel nutricional de éstos; por ejemplo, en los estados de Tabasco y Chiapas, se consume una bebida fermentada a base de maíz molido, que se le conoce popularmente con el nombre de "pozol", hay estudios realizados que indican que al aumentar los días de fermentación de éste, se incrementa la forma micrológica, proporcionando principalmente sobre todo aminoácidos y proteínas.

Hongos enteógenos (alucinógenos) [editar]
Los hongos enteógenos cobran particular importancia en Mesoamérica, debido a que se encuentran ampliamente distribuidos. Al igual que con los individuos del género Claviceps, los hongos alucinógenos como los hongos psilocibios han sido utilizados últimamente por la industria farmacéutica para la extracción de productos con fines psicoterapéuticos (psilocibinas y psilocinas) y también algunas especies del reino monera. Algunos hongos reportados como tóxicos son en realidad enteógenos. Los hongos mágicos fueron popularizados en el mundo por el investigador Gordon Wasson y la célebre sacerdotisa mazateca María Sabina], de Oaxaca, México.

Hongos medicinales [editar]
Desde el descubrimiento por Fleming de la penicilina como un metabolito del mecanismo antagónico que tienen los hongos contra otros microorganismos, se ha desarrollado una gran industria para el descubrimiento, separación y comercialización de nuevos antibióticos. Entre las especies medicinales más importantes podemos citar el Ganoderma lucidum, el Trametes versicolor (o Coriolus v.), el Agaricus blazei, Cordyceps sinensis y el Grifola frondosa, entre muchos otros.

Hongos contaminantes [editar]
Los hongos contaminantes resultan un grave problema para el hombre; dentro de las setas cabe mencionar las que parasitan y pudren la madera, como Coniophara o las comúnmente denominadas "orejas". Sin embargo, el mayor perjuicio se obtiene de los hongos microscópicos, sobresaliendo los mohos que pueden atacar y degradar.

Hongos venenosos [editar]
En la naturaleza, sólo ciertas variedades de hongos son comestibles, el resto son tóxicos por ingestión pudiendo causar severos daños multisistémicos e incluso la muerte. La Micología tiene estudios detallados sobre estas variedades de hongos. Es muy importante tomar en serio lo antes dicho.
Especies como la Amanita phalloides, Cortinarius orellanus, Amanita muscaria, Chlorophyllum molybdites, Galerina marginata o la Lepiota helveola debido a sus enzimas tóxicas para el ser humano causan síntomas como: taquicardias, vómitos y cólicos dolorosos, sudor frío, exceso de sed y caídas bruscas de la presión arterial, excreciones sanguinolientas. La víctima contrae graves lesiones necróticas en todos los órganos especialmente en el hígado y el riñón. Estos daños son muchas veces irreparables y se requiere transplante de órganos por lo general.
El reconocimiento de estos hongos requiere adquirir el reconocimiento visual de la morfología de los hongos venenosos. No existe ninguna regla general valida para su reconocimiento, la única forma es conocerlos y reconocerlos.
Como tratamiento ambulatorio a aplicar si se sospecha el consumo de hongos venenosos es provocar la inmediata expulsión mediante vómitos de la víctima y y dar el llamado Antídoto universal, llevar al afectado a urgencia médica antes de las 4 horas de haberlos consumido para atención de extrema urgencia.
Galería Hongos venenosos

Amanita phalloides

Amanita pantherina

Amanita muscaria

Boletus satanas

Amanita virosa

Mallorca fungus

Paxillus involutus

Russula emetica

Micocultura [editar]
El cultivo de los hongos se llama micocultura, y se practica por su interés económico o científico. En el primer caso se trata por ejemplo de especies comestibles de géneros como Agaricus o Pleurotus, o de especies saprotróficas que producen sustancias alopáticas (antibióticos) (como la penicilina, producida por hongos del género penicilium). Las levaduras son importantes en la producción de alimentos o bebidas fermentadas, especialmente las del género Saccharomyces, y también como organismos modelo en la investigación biológica.
Es posible cultivar o dejar que prosperen mohos para su estudio en casa o en la escuela. Sobre el pan humedecido crece pronto un micelio de Rhizopus, que forma esporangios globosos y oscuros; y en la cáscara de los cítricos se desarrolla enseguida Penicilium, con sus características esporas verdeazuladas. Los hongos generalmente se desarrollan mejor en la semi oscuridad y en ambientes húmedos.
Sin embargo, es recomendable hacer estos estudios bajo la supervisión de un micólogo o especialista ya que hay mohos altamente peligrosos.Publicado por Melany Marabotto 1º9

Caracteristicas y Surgimiento De La Planta






Caracteristicas principales de la planta

A diferencia del reino Animalia (reino animal), son autótrofos, ya que poseen cloroplastos, que permiten la fotosintesís; además no poseen capacidad de locomoción. Comparten con ese reino la característica de ser seres eucariotas.





Surgimiento

Las plantas se originaron entre los primeros seres vivos de La Tierra. Descienden de los eucariotas autótrofos aparecidos en el proterozoico. Sus primeros representantes no fueron vasculares. Por el contrario tenían estructuras apenas diferenciadas. Dependían del agua completamente para su vida. La evolución de las algas las lleva a desarrollar las primeras hojas. Inmediatamente en el silúrico comienzan a desarrollarse las primeras plantas terrestres independientes de las evolucionadas algas de nuestros dias

SISTEMA GENITAL
APARATO GENITAL MASCULINO:
EL aparato genital masculino está formado por los siguientes órganos y estructuras:TESTÍCULOS. Son dos órganos situados en la región inguinal en el interior de una bolsa llamada Escroto. Producen las células reproductoras masculinas o Espematozoides y la Testosterona, hormona que permite la aparición y desarrollo de los caracteres sexuales masculinos.VÍAS GENITALES. Conductos que permiten la salida de los espermatozoides:Epidídimo. Tubo largo y plegado en la parte superior de cada testículo donde se almacenan los espermatozoides.Canales deferentes o espermiductos. Finos tubos que salen del epididimo y desembocan en la Uretra.Uretra: Conducto de evacuación dela vejiga de la orina y de los espermatozoides.GLÁNDULAS ANEJAS. Son la Vesículas Seminales y la Próstata. Producen sustancias nutritivas y protectoras para los espematozoides y vierten a los canales deferentes.Junto con ellos constituyen el semen .PENE. Es el órgano eréctil que permite depositar los espermatozoides en las vías genitales femeninas.En su extremo se localiza el Glande, zona muy sensible recubierta por el Prepucio, repliegue de la piel.

domingo, 30 de agosto de 2009

FUNCION DE LAS PLANTAS


A diferencia de los animales, que necesitan digerir alimentos ya elaborados, las plantas son capaces de producir sus propios alimentos a través de un proceso químico llamado fotosíntesis. Para realizar la fotosíntesis las plantas disponen de un pigmento de color verde llamado clorofila que es el encargado de absorber la luz adecuada para realizar este proceso. Además de las plantas, la fotosíntesis también la realizan las algas verdes y ciertos tipos de bacterias.
La fotosíntesis es un proceso que transforma la energía de la luz del sol en energía química. Consiste, básicamente, en la elaboración de azúcar a partir del C02 ( dióxido de carbono) minerales y agua con la ayuda de la luz solar.


Resultante de este proceso, es el oxígeno., un producto de deshecho, que proviene de la descomposición del agua. El oxígeno, que se forma por la reacción entre el CO2 y el agua, es expulsado de la planta a través de los estomas de las hojas. Para hacer la fotosíntesis se necesita la energía que toma la planta del sol.
Las plantas han tenido y tienen un papel fundamental en la historia de la vida sobre la Tierra. Ellas son las responsables de la presencia del oxígeno, un gas necesario para la mayoría de seres que pueblan actualmente nuestro planeta y que lo necesitan para poder respirar. Pero esto no fue siempre así. En un principio la atmósfera de la Tierra no tenía prácticamente oxígeno y era especialmente muy rica en dióxido de carbono (CO2), agua en forma de vapor ( H2O) , y nitrógeno (N) . Este ambiente hubiera sido irrespirable para la mayoría de las especies actuales que necesitan oxígeno para poder vivir.
Los primeros seres vivos no necesitaban oxígeno para poder respirar. Al contrario, este gas constituía un veneno para ellos. Fueron ciertas bacterias, junto con las plantas, las que, hace más de 2000 millones de años empezaron a iniciar el proceso de la fotosíntesis, transformando la atmósfera y posibilitando la vida tal como se conoce en la actualidad.



RESPIRACIÓN DE LAS PLANTAS



La respiración es un proceso necesario en todos los seres vivos. La respiración permite a las células producir la energía necesaria para que los seres vivos puedan realizar sus funciones vitales ( crecer, reproducirse, transportar nutrientes, defenderse, etc). Mediante la respiración los seres vivos también expulsan las substancias de desecho de las células. Al respirar los seres vivos consumen oxígeno y expulsan dióxido de carbono ( CO2) . Al igual que los animales, las plantas respiran. La respiración en las plantas consiste en el intercambio de gases entre la planta y la atmósfera. Las plantas toman oxígeno de la atmósfera y utilizan las reservas de hidratos de carbono para expulsar dióxido de carbono y agua en forma de vapor a la atmósfera. .
Este proceso se realiza a través de unas aberturas de las hojas y de las partes verdes de las planta, llamadas estomas, y de otra serie de aberturas en la corteza de tallos, llamados lenticelas, o raíces ( pelos radicales) . La respiración en las plantas sería una especie de proceso contrario al de la fotosíntesis: En la fotosíntesis la planta obtiene dióxido de carbono y expulsa oxígeno; en la respiración la planta toma oxígeno y desprende dióxido de carbono.
Las plantas necesitan de la clorofila para realizar la fotosíntesis, por eso muchos árboles que pierden las hojas en invierno dejan de realizar esta función. Sin embargo las plantas siguen respirando tanto en invierno como en otros épocas.
Mientras que la fotosíntesis solamente se realiza por el día, la respiración se lleva a cabo tanto por el día como por la noche. La respiración de las plantas produce la transpiración o perdida del agua. Cuando falta agua en la atmósfera las plantas tienen la capacidad de cerrar los estomas para no perder agua.



ALIMENTACIÓN DE LAS PLANTAS:


Las plantas necesitan alimentarse para formar sus tejidos. Los vegetales se alimentan absorbiendo del aire el dióxido de carbono y el oxígeno; y del suelo el agua y las substancias minerales.
El agua es necesaria para formar las células y para que las substancias minerales pueden estar disueltas y se puedan absorber. La mayoría de las funciones de las plantas no pueden realizarse sin el agua.
Los principales minerales que toman del suelo son el nitrógeno, el fósforo y el potasio. Las plantas necesitan nitrógeno para poder crecer, para poder desarrollar la clorofila y para la fotosíntesis. El fósforo es necesario para que se desarrollen las raíces y para que crezcan los frutos. El potasio es necesario para que los vegetales realicen numerosas funciones como la respiración o el transporte de azúcar dentro de las mismas.
Los minerales, junto con el agua, se mezclan formando la savia bruta que circula por el interior de los vasos leñosos hasta llegar a las hojas. Una vez en las hojas, se produce la transformación de la savia bruta en savia elaborada mediante el proceso de la fotosíntesis. La savia elaborara es conducida por los vasos liberianos a todas las partes de la planta para que sirva de alimento. El material sobrante se almacena y constituye las reservas del vegetal. ( Más información sobre alimentación en las plantas)










FOTOSINTESIS









La fotosíntesis, del griego antiguo φοτο (foto) "luz" y σύνθεσις (síntesis) "unión", es la base de la vida actual en la Tierra. Proceso mediante el cual las plantas, algas y algunas bacterias captan y utilizan la energía de la luz para transformar la materia inorgánica de su medio externo en materia orgánica que utilizarán para su crecimiento y desarrollo.





Los organismos capaces de llevar a cabo este proceso se denominan fotoautótrofos y además son capaces de fijar el CO2 atmosférico (lo que ocurre casi siempre) o simplemente autótrofos. Salvo en algunas bacterias, en el proceso de fotosíntesis se producen liberación de oxígeno molecular (proveniente de moléculas de H2O) hacia la atmósfera (fotosíntesis oxigénica). Es ampliamente admitido que el contenido actual de oxígeno en la atmósfera se ha generado a partir de la aparición y actividad de dichos organismos fotosintéticos. Esto ha permitido la aparición evolutiva y el desarrollo de organismos aerobios capaces de mantener una alta tasa metabólica (el metabolismo aerobio es muy eficaz desde el punto de vista energético.

Los organismos capaces de llevar a cabo este proceso se denominan fotoautótrofos y además son capaces de fijar el CO2 atmosférico (lo que ocurre casi siempre) o simplemente autótrofos. Salvo en algunas bacterias, en el proceso de fotosíntesis se producen liberación de oxígeno molecular (proveniente de moléculas de H2O) hacia la atmósfera (fotosíntesis oxigénica). Es ampliamente admitido que el contenido actual de oxígeno en la atmósfera se ha generado a partir de la aparición y actividad de dichos organismos fotosintéticos. Esto ha permitido la aparición evolutiva y el desarrollo de organismos aerobios capaces de mantener una alta tasa metabólica (el metabolismo aerobio es muy eficaz desde el punto de vista energético).




La otra modalidad de fotosíntesis, la fotosíntesis anoxigénica, en la cual no se libera oxígeno, es llevada a cabo por un número reducido de bacterias, como las bacterias púrpuras del azufre y las bacterias verdes del azufre; estas bacterias usan como donador de hidrógenos el H2S, con lo que liberan azufre.








ECOSISTEMA





Los ecosistemas son sistemas complejos como el bosque, el río o el lago, formados por una trama de elementos físicos (el biotopo) y biológicos (la biocenosis o comunidad de organismos).

El ecosistema es el nivel de organización de la naturaleza que interesa a la ecología. En la naturaleza los átomos están organizados en moléculas y estas en células. Las células forman tejidos y estos órganos que se reúnen en sistemas, como el digestivo o el circulatorio. Un organismo vivo está formado por varios sistemas anatómico-fisiológicos íntimamente unidos entre sí.



La organización de la naturaleza en niveles superiores al de los organismos es la que interesa a la ecología. Los organismos viven en poblaciones que se estructuran en comunidades. El concepto de ecosistema aún es más amplio que el de comunidad porque un ecosistema incluye, además de la comunidad, el ambiente no vivo, con todas las características de clima, temperatura, sustancias químicas presentes, condiciones geológicas, etc. El ecosistema estudia las relaciones que mantienen estre sí los seres vivos que componen la comunidad, pero también las relaciones con los factores no vivos.



Funcionamiento del ecosistema:



El funcionamiento de todos los ecosistemas es parecido. Todos necesitan una fuente de energía que, fluyendo a través de los distintos componentes del ecosistema, mantiene la vida y moviliza el agua, los minerales y otros componentes físicos del ecosistema. La fuente primera y principal de energía es el sol.


En todos los ecosistemas existe, además, un movimiento continuo de los materiales. Los diferentes elementos químicos pasan del suelo, el agua o el aire a los organismos y de unos seres vivos a otros, hasta que vuelven, cerrándose el ciclo, al suelo o al agua o al aire.
En el ecosistema la materia se recicla -en un ciclo cerrado- y la energía pasa - fluye- generando organización en el sistema.

Estudio del ecostema


a) Relaciones alimentarias.-
La vida necesita un aporte continuo de energía que llega a la Tierra desde el Sol y pasa de unos organismos a otros a través de la cadena trófica.


sábado, 29 de agosto de 2009





















BIOMAS DE·L URUGUAY






¿Qué es un bioma?: podemos decir que los biomas son amplias comunidades terrestres determinadas basicamente por la vegetación, clima, tipo de suelo.









Por tanto en Uruguay encontramos los siguientes biomas:


Pradera: Cubre más del 85% de nuestro territorio. Predominan gramíneas (pastos), tréboles, chircas y otros arbustos. Fauna: venado de campo, ratón de campo, zorro, apereá, mulita, tatú, liebre, ñandúes, teros, pájaros







Bañados y lagunas: Ejemplo los bañados del este en Rocha, Treinta y Tres y Maldonado, Bañados de Santa Lucía. Son extensiones de agua no donde su profundidad no es mayor a seis metros. Se encuentran numerosas plantas acuáticas y animales como aves, nutrias, carpinchos, sapos, ranas, tortugas, caracoles.




Costas sobre el Río de la Plata y Océano Atlántico: Se caracteriza por presentar arcos arenosos y puntas pedregosas. Presenta 3 zonas: 1) Supralitoral (casi siempre esta seca), 2) mesolitoral (a veces está seca y otras veces cubierta por agua) y 3) infralitoral (región bajo agua). Existen diversos seres vivos que habitan en cada una de las zonas, desde pastos en la zona seca hasta peces en la región bajo agua.




Bosques o Montes: Hay varios tipos: a) Monte serrano (se ubican en las serranías del este y norte del país), b) Monte de quebrada (se ubican en las quebradas, es decir depresión del relieve), c) Monte fluvial (que se desarrolla a ambos lados de nuestros ríos y arroyos). Se caracteriza por la presencia de diversos árboles y arbustos y de animales como: aves, zorrillos, gato montés, apereá, comadreja, nutria, sapos, tortugas, lagartos, víboras, insectos, entre otros; y también depende de qué tipo de monte se trate.






Reparto geográfico de diferentes biomas

Fotosintesis

Durante millones de años, las plantas han usado la fotosíntesis para captar energía del sol y convertirla en energía electromecánica. Ingenieros y científicos han intentado desarrollar una versión artificial de la fotosíntesis que pudiera ser usada para producir combustibles líquidos a partir de dióxido de carbono y agua.

Ahora, investigadores del Berkely Lab, han dado un paso muy importante en esta dirección con el descubrimiento de que cristales de óxido de cobalto de tamaño nanométrico pueden de manera efectiva provocar una de las reacciones críticas de la fotosíntesis, la de dividir las moléculas de agua.

"La fotooxidación de las moléculas de agua en oxígeno, electrones y protones es una de las dos reacciones esenciales de un sistema de fotosíntesis artificial. Proporciona los electrones necesarios para reducir el dióxido de carbono en combustible", comenta Heiz Frei, que ha participado en este proyecto, en un comunicado. "La fotooxidación requiere un catalizador que sea eficiente en el uso de los fotones solares y lo suficientemente rápido para continuar con el flujo solar y evitar la pérdida de esos fotones. Grupos de nanocristales de cobalto de óxido son lo suficientemente eficientes y rápidos, así como robustos", puntualiza.

La fotosíntesis artificial para la producción de combustibles líquidos proporciona la posibilidad de una fuente de energía renovable que no contribuiría al calentamiento global resultante de la combustión de petróleo y carbón. La idea es mejorar el proceso que durante mucho tiempo ha servido a las plantas y a ciertas bacterias para integrarse en un una única "plataforma" capaz de almacenar la luz solar, captar los fotones y los sistemas catalíticos que pueden oxidar agua, en otras palabras crear una hoja artificial,

Moléculas inorgánicas

"Para sacar ventaja de la flexibilidad y la precisión con la que absorbe, las propiedades catalíticas pueden ser controladas mediante estructuras moleculares inorgánicas", comenta Frei.

En fases previas del trabajo, los investigadores se han dado cuenta de que el óxido de iridio era lo suficientemente rápido para hacer ese trabajo. Sin embargo el iridio es el metal menos abundante de la tierra y no puede ser usado a gran escala. Necesitaban un metal igual de efectivo pero más abundante.

Las plantas llevan a cabo la fotooxidación de las moléculas de agua a través de un proceso complejo llamado Fotosistema II, en la que enzimas que contienen manganeso sirven como catalizadores. Buscando catalizadores puramente inorgánicos que disolvieran el agua, que mimetizaran las propiedades del manganeso en la naturaleza, pero que fueran más robustos, los investigadores dieron con el óxido de cobalto, un material muy abundante.

Cuando Frei y su equipo probaron con micropartículas de óxido de cobalto, descubrieron que eran poco eficientes y no lo suficientemente rápidas como para propiciar la fotosíntesis. Sin embargo, cuando usaron nanopartículas de ese mismo material, la historia cambió.

Proseso de Fotosintesis artificial

Una nueva investigación nos acerca a la fotosíntesis artificial

Investigadores estadounidenses pertenecientes al Berkeley Lab han dado un paso más para conseguir un sistema capaz de imitar a la función fotosintética que realizan las plantas, mediante la cual captan energía solar y la convierten en energía electromecánica. Este grupo de investigadores ha descubierto que nanocristales de óxido de cobalto son capaces de llevar a cabo una de las fases más importantes de la fotosíntesis, como es la de dividir moléculas de agua. Este es sólo un primer paso, pero sus descubridores consideran que este componente es lo suficientemente eficaz como para dar el paso de desarrollar una fotosíntesis artificial. Esto permitiría obtener energía limpia y abundante. Por Raúl Morales de Tendencias Científicas.

Fotosintesis

El proceso biológico más importante de la Tierra es la fotosíntesis de las plantas verdes. A partir de ésta se produce prácticamente toda la materia orgánica de nuestro planeta y se garantiza toda la alimentación de los seres vivos.

De este proceso químico y biológico dependen tres aspectos de suma importancia:

· Por la fotosíntesis las plantas verdes producen alimentos y materia orgánica para si mismas y para alimentar a los animales herbívoros, y éstos, a su vez, a los animales carnívoros.

· Se vuelve a utilizar el dióxido de carbono ICO,) producido por los animales y por los procesos de putrefacción o descomposición. De otra manera el CO, saturaría el planeta.

· Se restituye el oxigeno al aire y se hace posible la respiración.

Las plantas verdes poseen en su estructura celular orgánulos especiales denominados cloroplastos, que tienen la cualidad de llevar a cabo reacciones químicas conocidas como fotosíntesis, o sea, de realizar síntesis con ayuda de la luz solar.

La fotosíntesis consiste en los siguientes procesos:

· El dióxido de carbono (CO2 ) es absorbido por los estamos de las hojas, y junto con el agua (H2O), que es absorbida por las raíces, llegan a los cloroplastos, donde con ayuda de la energía de la luz se produce la glucosa (C6 H12 O6).

· Durante esta reacción se produce oxígeno (O2), que es emitido al aire o al agua y es utilizado para la respiración de otros seres vivos. la fórmula sencilla de la reacción química es la siguiente:
6 CO2 + 12 H2O + energía de la luz = C6 H12 06 + 6 O2 + 6 H2O
Esto significa que se usan 6 moléculas de dióxido de carbono (CO2) más 12 moléculas de agua (H2O) más energía de la luz para producir una molécula de glucosa (C6 H12 O6) más 6 de oxígeno (O2) y quedan6moléculos de agua (H2O).

· A partir de la glucosa (C6 H12 O6) un azúcar muy común en las frutas, se producen la sacarosa, el almidón, la celulosa, la lignina o madera y otros compuestos, que son la base de los alimentos para las plantas mismas y para los herbívoros.

Mediante el proceso de la fotosíntesis la energía solar es acumulada en forma de compuestos químicos, que al ser consumidos por los seres vivos liberan esa energía y sirven para mantener los procesos vitales en las células (calor, movimiento, etc.).

De la fotosíntesis depende la alimentación de todos los seres vivos sobre la Tierra, incluido el hombre, en forma directa (herbívoros) o indirecta (carnívoros, carroñeros, detritívoros, etc.). Sin plantas verdes no sería posible la existencia ni de los animales ni de los seres humanos. Es más, las fuentes de energía orgánica (carbón, petróleo, gas natural y leña) no son otra cosa que energía solar acumulada y liberada en los procesos de combustión, mediante la cual se mueve en gran parte la sociedad moderna (vehículos, cocinas, fábricas, etc.).

Es por esto que el proceso final de combustión de estas fuentes de energía orgánica produce agua y dióxido de carbono. Cuando la combustión es imperfecta o los combustibles orgánicos contienen impurezas la combustión, como la de los motores, produce elementos contaminantes, que pueden afectar al ambiente y a la salud de las personas.

Fotosintesis

El proceso de la fase luminosa, supuesto para dos electrones, es el siguiente: Los fotones inciden sobre el fotosistema II, excitando y liberando dos electrones, que pasan al primer aceptor de electrones, la feofitina. Los electrones los repone el primer dador de electrones, el dador Z, con los electrones procedentes de la fotólisis del agua en el interior del tilacoide (la molécula de agua se divide en 2H+ + 2e- + 1/2O2). Los protones de la fotólisis se acumulan en el interior del tilacoide, y el oxígeno es liberado.

Los electrones pasan a una cadena de transporte de electrones, que invertirá su energía liberada en la síntesis de ATP. ¿Cómo? La teoría quimioosmótica nos lo explica de la siguiente manera: los electrones son cedidos a las plastoquinonas, las cuales captan también dos protones del estroma. Los electrones y los protones pasan al complejo de citocromos bf, que bombea los protones al interior del tilacoide. Se consigue así una gran concentración de protones en el tilacoide (entre éstos y los resultantes de la fotólisis del agua), que se compensa regresando al estroma a través de las proteínas ATP-sintasas, que invierten la energía del paso de los protones en sintetizar ATP. La síntesis de ATP en la fase fotoquímica se denomina fotofosforilación.

Los electrones de los citocromos pasan a la plastocianina, que los cede a su vez al fotosistema I. Con la energía de la luz, los electrones son de nuevo liberados y captados por el aceptor A0. De ahí pasan a través de una serie de filoquinonas hasta llegar a la ferredoxina. Ésta molécula los cede a la enzima NADP+-reductasa, que capta también dos protones del estroma. Con los dos protones y los dos electrones, reduce un NADP+ en NADPH + H+.

El balance final es: por cada molécula de agua (y por cada cuatro fotones) se forman media molécula de oxígeno, 1,3 moléculas de ATP, y un NADPH + H+.


Esquema de la etapa fotoquímica, que se produce en los tilacoides.

Fotofosforilación cíclica [editar]

Tiene lugar al mismo tiempo que la acíclica. En ella sólo interviene el fotosistema I. Los electrones liberados, después de llegar a la ferredoxina, pasan a las plastoquinonas, y siguen la cadena de transporte de electrones hasta regresar a la plastocianina y al fotosistema I. Por tanto, se genera ATP en lugar de NADPH. Sirve para compensar el hecho de que en la fotofosforilación acíclica no se genera suficiente ATP para la fase oscura.

Fase bioquímica o ciclo de Calvin: biosíntesis orgánica [editar]

Esquema simplificado del ciclo de Calvin-Benson

La fase bioquímica o ciclo de Calvin o ciclo reductivo de las pentosas-fosfato consiste en un ciclo de reacciones químicas en las que se incorpora el CO2 de la atmósfera en moléculas orgánicas, y se originan triosas fosfato, los primeros azúcares previos a la formación de sacarosa y almidón. Durante este ciclo se emplean el ATP y el NADPH producidos en la etapa fotoquímica. Se divide en tres etapas: carboxilación, reducción y regeneración.

Este ciclo comienza con una pentosa, la ribulosa-1,5-fosfato, que se carboxila con el CO2, y se descompone en dos moléculas de ácido-3-fosfoglicérico. Con el gasto de un ATP, el ácido-3-fosfoglicérico se fosforila en ácido-1,3-bifosfoglicérico. Éste se reduce con el NADPH, y se libera una molécula de ácido fosfórico, formándose el gliceraldehído-3-fosfato. La molécula formada puede seguir ahora dos vías: una es dar lugar a más ribulosa-1,5-fosfato para seguir el ciclo, y la otra es dar lugar a los distintos principios inmediatos: glucosa o fructosa, almidón y a partir de ellos los demás glúcidos, y los lípidos, proteínas y nucleótidos que requiere la célula...

Hay que destacar que tanto la fase fotoquímica como la fase biosintética se producen a la vez. Son inseparables, ya que los productos de la fase fotoquímica son empleados en la fase biosintética. Por otro lado al consumir en la fase biosintética el ATP y NADPH se obtienen ADP y NADP+ para la fase fotoquímica. Para asegurar que ambas fases se produzcan a la vez existe una fuerte fotorregulación sobre las enzimas del ciclo de Calvin para que estén activas por el día e inactivas por la noche, en especial sobre la enzima rubisco. No obstante existe una variante de fotosíntesis presente en ciertas plantas que permite separar la fijación del CO2 de la fase fotoquímica. Se trata de la fotosíntesis tipo CAM, empleada por plantas adaptadas a climas desérticos, para evitar que se abran los estomas por el día para fijar el CO2, con la consiguiente pérdida de agua.


viernes, 28 de agosto de 2009

BIOMAS DEL URIGUAY
¿Qué es un bioma?: podemos decir que los biomas son amplias comunidades terrestres determinadas basicamente por la vegetación, clima, tipo de suelo
BIOMAS DEL URUGUAY
¿QUE ES UNA PLANTA?


Las plantas, al igualque los animales, son seres vivos, porque nacen,crecen,respiran,se alimentan y se reproducen. Los animales son organismos heterotrofos, porque no son capaces de fabricar su propia comida y tienen que alimentarse de plantas o de otros animales.

La mayoria de los animales pueden desplazarse de un sitio a otro para buscar comida,encontrar pareja o escapar de sus depredadores.
La ciencia que estudia a las plantas se denomina
BOTANICA.


EL CUERPO DE LAS PLANTAS
La mayoria de las plantas que conoces estan formadas por tres partes:el tallo,las hojas y la raiz.

LA RAIZ sujeta la planta al suelo y absorbe el agua y las sales minerales que esta necesita.Laaraiz nace hacia el interior de la tierra.
Las raices tienen unos pelillos, lamados pelos absorbentes, por los que absorben el agua y las sales minerales.


EL TALLO sostiene las hojas, las flores y los frutos .El tallo tiene una especie de tubos, llamados vasos conductores, que transpiran la savia. Unos tubos llevan el agua y las sales minerales desde las raices hasta las hojas; otros transpiran el alimento desde las las hojas al restom de la la planta.

LAS HOJAS son una especie de lagrimas de color verde que salen del tallo y de las ramas .Estan unidas al tallo por un rabillo que recibe el nombre de peciolo.!ES UNA FABRICA ENCARGADA DE PRODUCIR ALIMENTOS¡


miércoles, 26 de agosto de 2009


CELULA

LAS PLANTAS

ESTRUCTURA DE UNA HOJA

Estructura de la hoja: organó clorofílico que está fixado en el largo del tallo o un ramo; la fotosintésis se realiza con la hoja.
Limbo: parte principal de la hoja.
Nervio lateral: línea que divide la hoja en sección pero no totalmente.
Nervio central: línea que divide la hoja en dos.
Peciolo: parte de la hoja que une limbo al tallo.
Tallo: parte de la planta que lleva las hojas.
Vaina: parte de la hoja que une peciolo al tallo.
Estipulas: punto del inserción de la hoja.

lunes, 24 de agosto de 2009


LOS REINOS
VEGETAL
Está formados por todas las plantas. Sus características principales son:
Son los únicos seres capaces de fabricar su propio alimento.
No pueden desplazarse de un lugar a otro.
No tienen órganos de los sentidos, aunque responden a ciertos estímulos: las raíces crecen hacia el suelo y buscan el agua; los tallos crecen hacia la luz.
Se clasifican en dos grupos:
Plantas sin flores
Plantas con flores
ANIMAL
Está formado por todos los animales. Sus características principales son:
Se alimentan de plantas o de otros animales
Se relacionan con el exterior a través de los movimientos (andan, vuelan o nadan) y a través de los órganos de los sentidos
Los animales pueden clasificarse en dos grupos:
Animales vertebrados
Animales invertebrados
PROTISTA
Los protistas pueden ser unicelulares, multicelulares o coloniales. Algunos se mueven y actúan como animales, otros llevan a cabo la fotosíntesis al igual que las plantas, ¡y otros parecen "creer" que son hongos!. Es posible que no creas que una pequeña ameba unicelular tenga mucho en común con un alga marina gigante, pero las dos pertenecen a los reinos protistasLos protistas pueden ser unicelulares, multicelulares o coloniales. Algunos se mueven y actúan como animales, otros llevan a cabo la fotosíntesis al igual que las plantas, ¡y otros parecen "creer" que son hongos!. Es posible que no creas que una pequeña ameba unicelular tenga mucho en común con un alga marina gigante, pero las dos pertenecen a los reinos protistas
FUNGI
Organismos eucarióticos filamentosos o, en raras ocasiones, unicelulares. Los hongos son heterótrofos saprobios o parásitos, y la nutrición es por absorción. Cerca de 100.000 especies han sido descritas.
DIVISION ZIGOMICOTA
Hongos terrestres, tales como el moho negro del pan.
DIVISION ASCOMICOTA
Hongos terrestres y acuáticos. Incluyen a la Neurospora. La reproducción sexual implica la formación de una célula característica el asco, en donde ocurre la meiosis y en cuyo interior se forman las esporas.
DIVISION BASIDIOMICOTA
Hongos terrestres, que incluyen a las setas comestibles y las venenosas. La reproducción sexual implica la formación de basidios, en los que ocurre la meiosis y se forman las esporas.
DIVISION DEUTEROMICOTA
Hongos imperfectos. Principalmente, hongos en los que no se ha observado un ciclo sexual. A esta división pertenece Penicilium, la fuente original de la penicilina. Otros hongos de esta división son los que causan el pie de atleta y los mohos que participan en la elaboración de algunos quesos como el Roquefort y el Camembert.
MONERA
Las móneras (procarióticas) son células que carecen de envoltura nuclear, cloroplastos y otros plástidos, mitocondrias y flagelos. Los procariotas son unicelulares, pero a veces se presentan como filamentos u otros cuerpos superficialmente multicelulares. Su modo de nutrición predominante es heterótrofo, por absorción, pero algunos grupos son autotróficos, ya sea fotosintéticos o quimiosintéticos. La reproducción es primariamente asexual, por fisión binaria o gemación, pero en algunos ocurren intercambios genéticos como resultado de conjugación, transformación, transducción e intercambio de plásmidos. Las formas móviles se desplazan por medio de flagelos bacterianos o por deslizamiento.
El reino Mónera contiene representantes de dos linajes distintos: Arqueobacterias y Eubacterias.